Synchronous Rectification for Forward Converters

Steve Mappus
Agenda

• Synchronous Rectifier (SR) Characteristics

• Forward Converter Transformer Reset Techniques

• Forward Converter SR Gate Drive
 • Self-Driven
 • Hybrid Self-Driven
 • Control-Driven

• SR Timing Issues

• Primary-Side Trigger + Linear Predict Control (LPC)
 • Application Example
 • Measured Data
What is Synchronous Rectification?

- Replacing secondary side rectifiers (D1, D2) with MOSFETs (Q2, Q3)

Benefits of SR

- Higher Efficiency
- Lower output voltage and higher current applications benefit most
- Parallel MOSFETs for higher current

SR Nomenclature

- Q2→control SR
- Q3→freewheeling SR

Rectifier Diode Efficiency

(All Converter Losses Neglected)

\[
\eta = \frac{P_O}{P_In} = \frac{V_O \times I_O}{V_O \times I_O + V_F \times I_O} = \frac{1}{1 + \frac{V_F}{V_O}}
\]
Parallel MOSFETs

Diode Thermal Characteristic
- Negative temperature coefficient
- Temp increase = V_F decrease
- Not easily paralleled

SR Thermal Characteristic
- Positive temperature coefficient
- Temp increase = $R_{DS(ON)}$ increase
- $T↑$, $R_{DS(ON)}↑$, $I_D↓$, $T↓$
- Automatic current sharing
- MOSFETs easily paralleled

Diode vs. MOSFET Thermal I-V Characteristics

$n = \text{Number parallel MOSFETs}$
Rectifier I-V Characteristics

Rectifier efficiency

\[\eta = \frac{P_O}{P_{IN}} = \frac{V_O \times I_O}{V_O \times I_O + V_F \times I_O} = \frac{1}{1 + \frac{V_F}{V_O}} \]

Schottky Rectifier (MBR4035PT, 35V, 40A)
- Operates in first quadrant (Q1) only
- \(\eta=86.84\%, (V_F=0.5V, V_O=3.3V)\)

SR MOSFET (FDMS8670S, 30V, 42A)
- \(\eta=97.06\%, (V_F=0.1V, V_O=3.3V)\)
- >10% improvement, BUT…
 - Considers \(R_{DS(ON)}\) conduction loss only!
 - Operates in third quadrant (Q3)
SR I-V Characteristics

SR Operates in Third Quadrant

- Low current
 \[R_{DS(Q1)} = R_{DS(Q3)} \]
- High current, SR body-diode will conduct if:
 \[I_D \times R_{DS(ON)} \geq V_{F(BD)} \]
- For \(V_{GS}=0V \), negative current flows through SR body-diode
CCM Buck, Diode Rectification

CCM

\[
\frac{V_O}{V_{IN}} = D \quad P_{DI} = V_F \times I_o \times (1 - D)
\]

- D1 operates in first quadrant only – operation similar to SR
- Lower voltage converters cannot tolerate losses associated with diode rectification
DCM Buck, Diode Rectification

DCM and CCM Voltage Gain

\[\frac{V_O}{V_{IN}} = D \]

\(k = 0.01 \)
\(k = 0.1 \)
\(k = 0.5 \)
\(k \geq 1 \)

DCM Buck Operational Waveforms

\[\frac{V_O}{V_{IN}} = \frac{2}{1 + \sqrt{1 + \frac{4 \times k}{D^2}}} \]
where, \(k = \frac{2 \times L}{R_O \times T} \)

- D1 operates in first quadrant only – no negative current flow during DCM
- Gain is non-linear during DCM operation
Non-Isolated Synchronous Buck

SR Dominant Losses:

- Channel conduction
 \[P_{SR(CH)} = I_O^2 \times R_{DS(ON)} \times (1 - D) \]
- Body-Diode conduction
 \[P_{SR(BD)} = V_F \times I_O \times t_{BD} \times F_s \]
 \[\text{Where: } t_{BD} = (t_1 - t_0) + (t_3 - t_2) \]
- Reverse Recovery
 \[P_{SR(RR)} = Q_{RR} \times V_{IN} \times F_s \]

Dedicated Controller or Driver
- Minimize dead time
- Anti cross-conduction protection
- Optimized gate drive current
- Emulate asynchronous operation
- Reduce body-diode conduction

www.fairchildsemi.com
SR body-diode has high V_F and long t_{RR}!
Parallel SR Schottky Diode

Parasitic Inductance Limitation

\[
\frac{di}{dt} = \frac{V_{SR(BD)} - V_F}{L_{p1} + L_{p2}}
\]

- Typical example:

\[
\frac{di}{dt} = \frac{1.2V - 0.5V}{2 \times 5nH} = 70 \frac{A}{\mu s}
\]

- Assume 15A load current

\[
dt = \frac{15A \times \mu s}{70A} = 215ns
\]

- Current commutation time can exceed body-diode conduction time

SyncFET™ with Monolithic Schottky

- Minimal parasitic inductance
- Low \(V_F \)
- Using same example parameters:

\[
\frac{di}{dt} = 600 \frac{A}{\mu s} \text{ (measured)} \quad dt = \frac{15A \times \mu s}{600A} = 25ns
\]

- Order of magnitude improvement
SyncFET™ Reverse Recovery

FDMS7670 vs FDMS7670S SyncFET™
- SyncFET™ Q_{RR} improvement of ~10%
- Previous generation trench technology would show improvement closer to ~50%
- FDMS7670S, SyncFET™ $V_F=0.43\text{V}$, FDMS7670 $V_F=0.7\text{V}$

www.fairchildsemi.com
Forward Converter with SR

- Q2, Q3 gate drive challenges similar to synchronous buck
- Primary to secondary isolation adds additional timing requirement
- Single-ended converter topology requires transformer reset
- Optimal SR timing is related to transformer reset method
Transformer Reset Techniques

Reset Winding
 + Reset Energy Recycled
 + Simple Off-Line Solution
 - 50% Duty Cycle Limit (1:1)
 - Possible Core Saturation
 - Transformer Structure
 - Q1 Hard Switched

RCD Reset
 + Inexpensive Off-Line Solution
 + >50% Duty cycle Possible
 - Reset Energy Dissipated
 - Q1 Hard Switched

Resonant Reset
 + Reset Energy Recycled
 + Fewest Components
 + Simple Telecom Solution
 - Repeatable Design Difficult
 - High VDS Stress
 - Not for Off-Line Power
 - Not Suitable for Self-Driven SR
 - Q1 Hard Switched

Active Clamp Reset
 + High Efficiency (ZVT)
 + Higher Frequency Operation
 + Lowest Vds Stress
 + Off-Line and Telecom
 + SR Gate Drive
 - Q1, Q2 Gate Drive
 - Higher Cost
 - Limited PWM and/or Driver Choices

Reset Method Impacts Self-Driven SR Gate Drive
SR Gate Drive Methods

1. Self-Driven

2. Hybrid Self-Driven

3. Control-Driven
Self-Driven SR

- SR gate drive derived from transformer (as shown) or output inductor
- Advantages
 - Simple – no timing issues!
 - SR gate charge recycled to load
 - High efficiency with minimal components
 - Best applied to active clamp forward (D and 1-D)
Self-Driven SR (Continued)

Self-Driven SR

- Disadvantages
 - SR gate drive is not regulated
 - Not compatible with all reset techniques
 - Difficult to optimize V_{GS} and $R_{DS(ON)}$ when $V_{IN} > 2:1$
 - $R_{DS(ON)}$ can vary by 10% or more
 - No control of freewheeling SR during start-up or light load
 DCM operation

$R_{DS(ON)}$ versus V_{GS} for
FDMS7670AS, SyncFET™

www.fairchildsemi.com
Hybrid Self-Driven SR

- Forward converters with resonant reset signals (ie, RCD or Resonant Reset)
- Control SR (Q2) is self-driven
- Freewheeling SR (Q3) gate-drive derived from primary-side inverted PWM
- Q1 to Q3, primary to secondary timing is critical
- Q2 to Q3 timing issues similar to non-isolated synchronous buck
Hybrid Self-Driven SR Timing

Freewheeling SR Timing Adjustments

- Split primary PWM signal
- Delay primary PWM rising edge, \(t_0 \rightarrow t_2, t_{RC1} \)
- Delay and invert secondary-side Q3 gate drive
- Apply \(t_{RC2} \) so that Q3 turns on just after VS goes negative
- Adjust \(t_0 \rightarrow t_2 > t_3 \rightarrow t_4 \) so that Q2 is OFF prior to Q3 ON (no cross-conduction for all line & load)
Advantages

- Improvement over self-driven SR
- Reduce body-diode conduction
- Regulate freewheeling SR gate drive
- Best applied to RCD or resonant reset forward converters

Disadvantages

- Non-adaptive to varying component or CCM/DCM mode change
- Control SR gate drive not regulated (V_{GS} proportional to V_{IN})
- Timing adjustments dependant upon R and C tolerance and duty cycle, D
- Can not be used if primary PWM includes internal gate drive
- Can not control freewheeling SR against negative current flow (DCM, pre-biased loads)

Full control of both SR MOSFETs only achievable using Control-Driven SR
Control-Driven SR

- Both SR MOSFETs are controlled by primary-side PWM
- General purpose low-side gate drivers or “smart-drivers” often used
- Offers full SR control during start-up, light-load, OCP, pre-biased output
- SR gate drive is regulated and independent of transformer reset method
- Q3 timing adjustment similar to previous Hybrid Self-Driven example
- RC Delay also needed for Q2 SR
SR secondary can be driven directly by PWM

Secondary to primary power stage propagation delay (solid arrows)
 • PWM to primary side gate drive and power transformer

Secondary to primary SR propagation delay (dashed arrows)
 • Power stage and SR delay times are often not equal
 • SR gate drive naturally leads primary MOSFET gate drive
 • Timing delay normally added in this path
Control-Driven SR Timing Delays
Primary-Side Control

Primary to secondary power stage propagation delay (solid arrows)
- PWM to primary-side gate drive and power transformer
- Delay normally added in this path

Primary to secondary SR propagation delay (dashed arrows)
- PWM to pulse transformer and SR MOSFET gate driver
- Often need to advance the SR signal (impossible)

Optimal timing adjustment requires primary and secondary sensing
Primary Sensing
- Any single-ended PWM input (SIN)
- Transformer reset voltage (DET)

Secondary Sensing
- Q2 drain-source voltage (LPC1)
- Q3 drain-source voltage (LPC2)
Primary-Side Triggering
Light Load (CCM)

FAN6210 Waveforms - Light Load (CCM), XP Triggered by DET

- XP rising edge triggers turn-on for each SR
- XN rising edge triggers turn-off for each SR
- XN triggered by PWM input (SIN) rising and falling edges
- XP control SR turn-on triggered by delayed PWM output (SOUT)
- XP freewheeling SR turn-on normally triggered by DET (shown)
Primary-Side Triggering
Full Load (CCM)

FAN6210 Waveforms - Heavy Load (CCM), XP Triggered by XN

- XP rising edge triggers turn-on for each SR
- XN rising edge triggers turn-off for each SR
- XN triggered by PWM input (SIN) rising and falling edges
- XP control SR turn-on triggered by delayed PWM output (SOUT)
- **XP freewheeling SR turn-on normally triggered by DET or XN (shown)**
 - XP can never trigger while XN is HIGH – prevents SR cross-conduction
SR Negative Current Issues

Forward SR
- Q2 blocks I_{NEG} when Q3 turns off (Q2 off)
- I_{NEG} charges SR C_{OSS} during Q3 off
- BV_{DSS} stress from switching I_{NEG}
- SR switching adjustment required (as shown)

Synchronous Buck
- Q1 drain clamped to DC source
- Q2 V_{DS} clamped to DC source through Q1 body-diode
- Negative inductor current ok for V_{DS}
Linear Predict Control (LPC)

\[\frac{1}{V_O} < \text{Ratio}_{LPC2} < \frac{1}{V_O - 0.5V} \]

- LPC Function is used to turn off Q3 before \(I_{LO}<0 \)A during DCM operation
- During CCM SR gate drive controlled by SP(XP) and SN(XN)
- SN signal follows PWM signal and cannot turn off Q3 before \(I_{LO}<0 \)
- Both SR \(V_{DS} \) monitored by resistor dividers
- Solves Problem of Negative SR Current
Primary-Side Triggering (DCM)

FAN6206 Waveforms - Light Load (DCM)
Primary-Side Triggering

Advantages
• Easily implements correct primary to secondary SR timing for forward converters
• No RC timing adjustments required
• Compatible with all forward transformer reset techniques including 2 switch forward
• Can be used with any single-ended PWM controller
• Green mode function disables freewheeling SR gate drive for $D<10\%$
• Operates in CCM and DCM
• Freewheeling SR control prevents negative current flow

Be Aware of
• SR Gate drive current limited to 0.7A/1A (source/sink)
 • Use FAN3xxx series low-side gate drivers for driving higher gate charge
• Internal fixed delays result in longer body-diode conduction times at higher frequency
 • For low output voltage converters SyncFET can help
Primary-Side Triggering Application Circuit Specifications

<table>
<thead>
<tr>
<th>INPUT</th>
<th>90V<sub>AC</sub><V<sub>IN(AC)</sub><264V<sub>AC</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>90V<sub>AC</sub><V<sub>IN(AC)</sub><264V<sub>AC</sub></td>
</tr>
<tr>
<td>Line Frequency</td>
<td>47Hz<F<sub>L</sub><63Hz</td>
</tr>
<tr>
<td>PFC Output</td>
<td>310V<sub>DC</sub><V<sub>BULK</sub><380V<sub>DC</sub></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTPUT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage</td>
<td>12V<sub>DC</sub></td>
</tr>
<tr>
<td>Output Power</td>
<td>300W</td>
</tr>
<tr>
<td>Load Current</td>
<td>25A</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>65kHz</td>
</tr>
</tbody>
</table>

Intended Application: PC Power (Computing)
Why 65kHz Operation?

- Lower EMI
- Trade Off: EMI filter size versus transformer size
Primary-Side Triggering
Application Validation Circuit
Measured Waveforms
Steady State and LPC Function

SP and SN control SR switching

LPC function during DCM operation

SIN→SOUT, 300ns fixed turn-on delay

SIN→SOUT, 100ns fixed turn-off delay
Measured Waveforms
SR Dead-Time, Load Transient

FW SR↓→Control SR↑, 500ns dead-time

FW SR↑→Control SR↓, 400ns dead-time

0A→10A load transient

10A→0A load transient

www.fairchildsemi.com
Measured Waveforms

Start-Up, OCP, Green Mode

SR control during start-up

Control SR

Freewheeling SR

10A→64A overload transient

FW SR control during start-up

PWM

(SIN)

XP, XN

V_{DS} Freewheeling SR

V_{DS} Control SR

Green mode function enabled for $D<10\%$
Measured Efficiency
Schottky vs SR

SR Efficiency Comparison
(115VAC Input, 12VDC Output, 300W, 12V/25A Output)

Efficiency (%) vs Output Power (%)

Primary-Side Trigger Control-Driven SR (FDP5800)
Schottky Rectifiers (FYP2006DN)
Summary

• Self-Driven SR
 • Best for active clamp forward where $I_{O(MIN)} > I_{LO}/2$ (BCM)
 • SR gate drive independent from primary control

• Hybrid Self-Driven SR
 • Performance improvement over self-driven SR

• Control Driven SR
 • SR timing is critical
 • Difficult to implement discretely

• FAN6210+FAN6206
 • Simplifies SR timing
 • Freewheeling SR control during DCM operation

Evaluate all SR solutions under steady state and dynamic test conditions!
Questions?

THANK YOU!
References

Follow us on Twitter twitter.com/fairchildSemi

View product and company videos, listen to podcasts and comment on our blog @ www.fairchildsemi.com/engineeringconnections

Visit us on Facebook @ www.facebook.com/FairchildSemiconductor