High Performance 1200V PT IGBT with Improved Short-Circuit Immunity

Chongman Yun, Sooseong Kim, Youngdae Kwon and Taehoon Kim
Fairchild Semiconductor
82-3 Dodang-Dong, Wonmi-Ku, Buchon, Kyunggi-Do, KOREA
Phone)+82-32-680-1325, Fax)+82-32-680-1823, E-mail)cmyun@Fairchildsemi.co.kr

Abstract
High performance 1200V punch-through type IGBTs, designed with improved short-circuit immunity are now fabricated on silicon direct bonded wafers. The emitter ballast resistance (EBR) structure is used to improve short-circuit immunity. These IGBTs exhibit short-circuit times which are longer than 50 microseconds. They exhibit remarkable DC and AC characteristics such as 2.0V of V_{ce(sat)} and 90 nanoseconds of turn-off time at 125°C. The temperature dependence of the IGBT has a positive coefficient like that of an NPT type IGBT.

Introduction
IGBTs are widely used in high voltage, high current applications thanks to their excellent input and output characteristics over other devices[1].

IGBT development has been mainly focused on the reduction of conduction and switching loss by optimizing the cell structure and lifetime control. Recently, improved ruggedness and short circuit immunity are the main focus of IGBT development, as its application on inductive loads is expanded. The NPT-IGBTs[2] provide improved ruggedness, switching loss and paralleling than the PT-IGBTs even though their V_{ce(sat)} is rather high. However, the real switching loss of the NPT-IGBT is much higher than the calculated switching loss considering the loss generated by the tail current which is below 10% of the rated collector current[3].

The turn-off time and tail current of the IGBT is reduced without high dose electron irradiation thanks to the thin and heavily doped buffer layer. This is not possible in conventional PT-IGBTs.
The short-circuit immunity of the fabricated IGBT is improved by employing the EBR pattern. The EBR pattern is generated by extending the n+ emitter stripe. Hence, no additional masking or processing step is required. The top-view and the cross-section of the IGBT are illustrated in Figure 1. The n+ emitter is connected to the cathode electrode only in the center of the narrow n+ emitter stripe. The electron current which flows through the channel located far from the contact generates a substantial voltage drop. The emitter stripe is bent and separated by a heavily doped p+ region in order to increase the emitter ballast resistance, and to reduce the voltage difference across the n+ emitter and p-well. Therefore, the parasitic npn bipolar transistor is prevented from turning on when a huge amount of hole current flows through the p-well underneath the n+ emitter and the IGBT is in a short-circuit state.

Experiment

Silicon direct bonding (SDB) wafers[4,5], which are directly bonded with n- float zone wafer and p+ CZ wafer, are used as the starting material. The SDB wafer is a good candidate for the high voltage IGBT because of the accurate controllability of the base thickness, base concentration, the n+ buffer thickness and the n+ buffer concentration[4]. A heavy dose of phosphorus is implanted on the n- wafer before bonding. Annealing, grinding, CMP etching and polishing follow bonding and a 100 um-thick drift layer is achieved. Formation of the n+ buffer with a doping concentration of higher than $3 \times 10^{17} \text{ cm}^{-3}$ and a thickness of less than 10 um is achieved with the SDB process, as opposed to the thin and heavily doped n+ buffer layer obtained, due to the inevitable thermal cycle during epitaxial growing, with conventional PT-IGBTs. The drift layer thickness is 105 um to obtain a BV of 1200V. The chip size of the fabricated IGBT which has 10A rated current is 5300 x 4010 µm² including the junction termination.
Results

Short Circuit Characteristics
The short-circuit capability of the fabricated IGBT has been tested at room temperature with the test circuit shown in Figure 2. The supplied collector voltage is 600V and the gate voltage is 15V. The switching waveforms of the IGBT with the EBR pattern are shown in Figure 3(b) and the conventional stripe patterns are shown in Fig 3(a).

Figure 2: Schematic Diagram of the Short Circuit Test Circuit

The figures show that the short-circuit rated IGBT is immune to short circuits for longer than 50 um seconds, while the conventional IGBT does not exhibit short-circuit immunity.

On-state characteristics
The fabricated IGBT has a thin and heavily doped n+ buffer layer as stated above. It is known that the switching speed is determined by the injection rate and the recombination rate of the hole injection from the p+ substrate into the drift region. The thin and heavily doped n+ buffer substantially suppresses the hole injection [6]. In addition, the tail current of the IGBT is reduced because the
recombination of the hole carrier during turn-off occurs at the collector side in the drift layer, where the high dose buffer provides sufficient recombination centers. Hence, the IGBT does not require high dose electron irradiation to achieve fast switching characteristics. The electron irradiation ranges from 0 to 10 Mrad. The effects of the buffer implant dose on device characteristics were investigated. The Vce(sat)-fall time trade-off curves with various buffer implant doses are shown in Figure 4.

![Graph showing Vce(sat)-Fall Time Trade-off Curves of the Fabricated IGBT at Tj = 25°C and Tj = 125 °C](image)

Figure 4: Vce(sat)-Fall Time Trade-off Curves of the Fabricated IGBT at Tj = 25°C and Tj = 125 °C

The Vce(sat) has been measured at the collector current of 10A with a gate bias of 15V. The threshold voltage is maintained around 5.5V. The fall time was measured from 90% to 10% of the collector current.

The curves show that the IGBT exhibits better performance as the buffer concentration increases from 1.4 X 10^{15} to 2.0 X 10^{15} cm^{-2}. The IGBT with a buffer dose of 2.0 X 10^{15} cm^{-2} exhibits 2.0 volt of Vce(sat) and 90 nanoseconds of fall time without electron irradiation. The leakage currents of the fabricated IGBT have been measured at 1200V. The leakage current decreases as the electron irradiation dose decreases. The IGBT without additional lifetime control shows leakage current of less than 10 nA.

Temperature Coefficients

Figure 5 shows the I-V curves of the IGBT without electron irradiation at room temperature and with Tj = 125 °C. The temperature dependence of the IGBT has a positive coefficient like that of an NPT type IGBT. The cross point at which (JZTC)\[7\], the Vce(sat) curves at Tj = 25°C and Tj = 125°C, cross one another rises as the electron irradiation dose increases. As a result, the temperature dependence of the IGBT becomes negative at the rated current when the electron irradiation dose is higher than 8 Mrad.
Discussion
The short circuit current of the fabricated IGBT is designed to be 350% to 400% higher than the rated current, while the conventional IGBT is designed to be 500% to 600% higher than the rated current. The short-circuit rated IGBT with the EBR pattern sacrifices on state voltage drop by around 0.2V due to the reduction in channel current.

The turn-off loss of the fabricated IGBT without electron irradiation is higher in comparison to an IGBT with electron irradiation, even though the IGBT has a positive temperature coefficient and shows excellent reliability. Hence, the IGBT characteristics are optimized with electron irradiation and a heavily doped buffer layer. This results in an IGBT with Vce(sat) ~ 2.4V, Eoff ~ 60µJ/A, tf ~ 150 ns and a positive temperature coefficient.

Figure 5: I-V Curves of the Fabricated IGBT without Electron Irradiation at Tj = 25°C and Tj = 125°C
A fabricated SDB IGBT is compared with a PT-IGBT and an NPT-IGBT below:

Table 1. Properties of the PT-IGBT, the NPT-IGBT and the SDB PT-IGBT

<table>
<thead>
<tr>
<th></th>
<th>PT type</th>
<th>NPT type</th>
<th>SDB type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vce,sat</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Switching Speed</td>
<td>Slow</td>
<td>Fast</td>
<td>Fast</td>
</tr>
<tr>
<td>Leakage Current</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>SCOSA</td>
<td>Medium</td>
<td>Large</td>
<td>Large</td>
</tr>
<tr>
<td>Lifetime Control</td>
<td>Yes</td>
<td>No</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Buffer</td>
<td>Heavy</td>
<td>No</td>
<td>Ultra Heavy</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td>Negative</td>
<td>Positive</td>
<td>Nega/Posi</td>
</tr>
<tr>
<td>Parallel Operation</td>
<td>Hard</td>
<td>Easy</td>
<td>Easy</td>
</tr>
<tr>
<td>Reliability</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Turn-off loss</td>
<td>Low</td>
<td>Low</td>
<td>Very Low</td>
</tr>
<tr>
<td>at low temp.</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>at high temp.</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Voltage rating</td>
<td>Epitaxy</td>
<td>FZ wafer</td>
<td>N+ FZ + P+CZ</td>
</tr>
</tbody>
</table>

This table shows that the SDB IGBT is a good solution in high voltage, high power applications because of the high conduction and switching characteristics. It may be concluded that the SDB IGBTs have the advantages of both NPT-IGBTs as well as PT-IGBTs.

Conclusion

High performance 1200V IGBTs, fabricated on SDB wafers, were characterized. The EBR pattern, which is generated by increasing the distance between the channel and collector without an additional mask, is used to enhance the short-circuit immunity of the IGBT.

The fabricated IGBTs are immune to short-circuits for longer than 50 microseconds. They exhibit 2.0V of Vce(sat) and 90 nanoseconds of falling time at 125°C. In addition, the temperature dependence of the IGBT has a positive coefficient like that of an NPT-IGBT. Hence, they are a promising solution for high voltage, high current applications.
References

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

- ACEx™
- Bottomless™
- CoolFET™
- CROSSVOLT™
- E²CMOS™
- FACT™
- FACT Quiet Series™
- FAST®
- FASTr™
- GTO™
- HiSeC™
- ISOPLANAR™
- MICROWIRE™
- POP™
- PowerTrench®
- QFET™
- QS™
- Quiet Series™
- SuperSOT™-3
- SuperSOT™-6
- SyncFET™
- TinyLogic™
- UHC™
- VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative or In</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td></td>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.</td>
</tr>
</tbody>
</table>